摘要/Abstract
摘要: 随着社会对大型储能设备的环保、充放电性能以及可持续发展的要求越来越高,基于金属氧化物的传统锂/钠离子电极材料受限于比容量,已难以满足未来储能系统的要求。有机材料、锂-硫/氧、液态流体等电池的研发与应用已成为未来能源系统研究的重要内容。其中,有机正极材料中的羰基类化合物Calix[4]quinone(C4Q)是一种很有前途的正极材料。该分子的空间位阻小,8个羰基结构都能发生可逆电极反应,其理论比容量高达446 mA·h/g,远超传统无机电极材料。C4Q不仅可以作为储锂材料,也可作为钠、锌、镁等二次电池的电极材料。本文分别介绍了C4Q在锂、钠二次电池和锌水系电池中的应用成果,并对C4Q今后进一步的开发利用做了展望。
关键词:
高容量,
有机正极材料,
羰基化合物,
Calix[4]quinone,
二次电池
Abstract: It is urgent to develop environmental friendly and sustainable large energy storage devices with superior performances. Conventional lithium-ion batteries based on transition metal oxide limited by their low theoretical specifc capacity and structure cannot meet the demand of future energy storage system. The development and application of new types of Li-organic materials, Li-S, Li-O2, flow battery and other batteries system will become the main focus of future energy systems. Especially, the conjugated carbonyl compounds with the merits of high theoretical capacity, flexible structure, fne redox property and green sustainability are potential energy storage materials for future. Calix[4] quinone (C28H16O8, C4Q) is a quinone derivative of Calix[4] arene, with a high theoretical capacity of 446 mA·h/g, which is signifcantly higher than that of traditional inorganic electrode materials. C4Q contains four p-quinone units linked by four methylene groups, the carbonyl groups are not sterically encumbered, hence the eight active centers are capable for reversible electrode reactions. Furthermore, the molecular structure of C4Q very stable and hardly decomposes in the electrochemical processes. More importantly, it is not limited to the reaction system theoretically by virtue of the electron transfer reaction, so it can be used as electrode materials for lithium, sodium, zinc and magnesium plasma batteries. In this paper, the applications of C4Q and its modifcation strategies are summarized.
Key words:
high capacity,
organic cathode material,
carbonyl compound,
Calix[4]quinone,
secondary battery
中图分类号:
O646
引用本文
孙会民, 闫冰, 黄苇苇, 王丽秋. 醌类电极材料Calix[4]quinone在二次电池中的应用[J]. 储能科学与技术, 2019, 8(4): 702-708.
SUN Huimin, YAN Bing, HUANG Weiwei, WANG Liqiu. Application of Calix[4]quinone in secondary batteries[J]. Energy Storage Science and Technology, 2019, 8(4): 702-708.
使用本文
0
/
/
推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文:
https://esst.cip.com.cn/CN/10.12028/j.issn.2095-4239.2019.0023
https://esst.cip.com.cn/CN/Y2019/V8/I4/702
参考文献
[1] GOODENOUGH J B, PARK K S J. The Li-ion rechargeable battery:A perspective[J]. J. Am. Chem., 2013, 135(4):1167-1176.
[2] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. J. M. Sci., 2011, 334(6058):928-935.
[3] CHOI N S, CHEN Z H, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew. Chem. Int., 2012, 51(40):9994-10024.
[4] 姚煜, 李克锋, 谢巧, 等. 高倍率锂离子电池材料研究进展[J]. 储能科学与技术, 2018, 7(S1):1-7. YAO Y, LI K F, XIE Q, et al. Research progress of high rate Li-ion battery materials[J]. Energy Storage Science and Technology, 2018, 7(S1):1-7.
[5] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3):587-603.
[6] WU K P, LIU D W, TANG Y. In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors[J]. Electrochim. Acta., 2018, 263:515-523.
[7] XU S D, ZHAO Y, LIU S B, et al. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries[J]. J. Mater. Sci., 2018, 53(17):12334-12351.
[8] LIU J, ZHANG J G, YANG Z G, et al. Materials science and materials chemistry for large scale electrochemical energy storage:From transportation to electrical grid[J]. Adv. Funct. Mater., 2014, 23(8):929-946.
[9] LUO Z Q, LIU L J, ZHAO Q, et al. An insoluble benzoquinonebased organic cathode for use in rechargeable lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2017, 56(41):12561-12565.
[10] HAUPLER B, WILD A, SCHUBERT U S. Carbonyls:Powerful organic materials for secondary batteries[J]. Adv. Energy Mater., 2015, 5(11):doi:10. 1002/aenm. 201402034.
[11] 古丽巴哈尔·达吾提, 卢勇, 赵庆, 等. 可充锂电池醌类化合物电极材料[J]. 物理化学学报, 2016, 32(7):1593-1603. GULBAHAR D, LU Y, ZHAO Q, et al. Quinones as electrode materials for rechargeable lithlum batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(7):1593-1603.
[12] 黄苇苇, 闫冰, 孙会民, 等. 有机正极材料在钠二次电池中的应用[J]. 燕山大学学报, 2018, 42(3):189-199. HUANG W W, YAN B, SUN H M, et al. Organic cathode materials for sodium-ion batteries[J]. Journal of Yanshan University, 2018, 42(3):189-199.
[13] HUANG W W, ZHU Z Q, WANG L J, et al. Quasi-solid-state rechargeable lithium-ion batteries with a Calix
[4] quinone cathode and gel polymer electrolyte[J]. Angew. Chem. Int. Ed., 2013, 52(35):9162-9166.
[14] ZHU Z Q, HONG M L, GUO D S, et al. All-solid-state lithium organic battery with composite polymer electrolyte and Pillar
[5] quinone cathode[J]. J. Am. Chem. Soc., 2014, 136(47):16461-16464.
[15] ZHENG S B, SUN H M, YAN B, et al. High-capacity organic electrode material Calix
[4] quinone/CMK-3 nanocomposite for lithium batteries[J]. Sci. China Mater., 2018, 61(10):1285-1290.
[16] 闫冰, 熊文旭, 郑仕兵, 等. 单壁碳纳米管提升正极复合材料杯
[4] 醌/CMK-3储锂性能[J]. 应用化学, 2019, 36(5):554-563. YAN B, XIONG W X, ZHENG S B, et al. Single-walled carbon nanotubes enhance the electrochemical performance of high-capacity organic cathode composites Calix
[4] quinone/CMK-3 for LIBs[J]. Chinese Journal of Applied Chemistry, 2019, 36(5):554-563.
[17] ZHENG S B, HU J Y, HUANG W W. Inorganic-organic nanocomposites Calix
[4] quinone (C4Q)/CMK-3 as cathode materials for high-capacity sodium batteries[J]. Inorg. Chem. Front., 2017, 4(11):1806-1812
[18] WANG X C, SHANG Z F, YANG A K, et al. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries[J]. Chem. 2018, 5(2):1-12.
[19] ZHAO Q, HUANG W W, LUO Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Sci. Adv., 2018, 4(3):doi:10.1126/sciadv.aao1761.
[20] DENG Q J, PEI J F, FAN C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries[J]. Nano Energy, 2017, 33:350-355.
[21] LIANG Y L, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nat. Mater., 2017, 16:841-848.
[22] DELMAS C. Sodium and sodium-ion batteries:50 years of research[J]. Adv. Energy Mater., 2018, 8(17):doi:10.1002/aenm.201703137.
[23] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2015, 46(21):3431-3448.
[24] YAN B, WANG L J, HUANG W W, et al. High-capacity organic sodium ion batteries using sustainable C4Q/CMK-3/SWCNTs electrode[J]. Inorganic Chemistry Frontiers, 2019, doi:10.1039/C9QI00507B.
相关文章 7
[1]
吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817.
[2]
陈丽萍, 冯金奎, 田园, 安永灵, 董广俊. 基于文献计量学的锂二次电池研究知识图谱分析[J]. 储能科学与技术, 2021, 10(3): 1196-1205.
[3]
涂健, 徐雄文, 胡海波, 聂阳, 曾涛, 孙秋实, 成浩, 谢健, 赵新兵. 凝胶型锂离子电池的制作及电化学和安全性能[J]. 储能科学与技术, 2021, 10(3): 1025-1031.
[4]
李荣辉, 闫伟, 吴晓强, 樊沁娜. 高容量高倍率的氮掺杂二次粒子石墨负极材料[J]. 储能科学与技术, 2019, 8(1): 116-122.
[5]
佟欢, 张蓓. 化学电源的发展历程及未来方向[J]. 储能科学与技术, 2018, 7(S1): 8-16.
[6]
刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 共轭羰基化合物作为钠/钾离子电池电极材料的研究进展[J]. 储能科学与技术, 2018, 7(6): 1171-1181.
[7]
周朝辉1,王莉2,李建刚1,何向明2. 单质磷复合材料在二次电池中的应用研究进展[J]. 储能科学与技术, 2016, 5(4): 430-435.
编辑推荐
Metrics
阅读次数
全文
摘要
本文评价